Tutorial 8

1. Theorem Assume the boundary conditions are symmetric. If

$$
\left.f(x) f^{\prime}(x)\right|_{x=a} ^{x=b} \leq 0
$$

for all (real-valued) functions $f(x)$ satisfying the BCs, then there is no negative eigenvalue.
Proof: Let λ be an eigenvalue, $X(x)$ be its eigenfunction.(Actually, we have known that λ is real since the BCs are symmetric.) Then we have

$$
-X^{\prime \prime}(x)=\lambda X(x) .
$$

Multiply the above equation by $X(x)$ and integrate w.r.t x, then

$$
-\int_{a}^{b} X^{\prime \prime}(x) X(x) d x=\int_{a}^{b} \lambda X(x)^{2}
$$

The L.H.S satisfies

$$
-\int_{a}^{b} X^{\prime \prime}(x) X(x) d x=\int_{a}^{b} X^{\prime 2}(x) d x-\left.\left(X^{\prime} X\right)\right|_{a} ^{b} \geq 0 .
$$

by taking $f(x)=X(x)$. Therefore

$$
\lambda \int_{a}^{b} X^{2}(x) d x \geq 0
$$

Hence we get $\lambda \geq 0$ since $X \not \equiv 0$.
2. (Exercise 4 on P129) Let

$$
g_{n}(x)= \begin{cases}1 \text { in the interval }\left[\frac{1}{4}-\frac{1}{n^{2}}, \frac{1}{4}+\frac{1}{n^{2}}\right) & \text { for odd } n \\ 1 \text { in the interval }\left[\frac{3}{4}-\frac{1}{n^{2}}, \frac{3}{4}+\frac{1}{n^{2}}\right) & \text { for even } n \\ 0 & \text { for all other } x .\end{cases}
$$

Show that $g_{n}(x) \rightarrow 0$ in the L^{2} sense but that $g_{n}(x)$ does not tend to zero in the pointwise sense.
Solution: On the one hand,

$$
\int_{-\infty}^{\infty}\left|g_{n}(x)-0\right|^{2} d x=\left\{\begin{array}{l}
\int_{\frac{1}{4}-\frac{1}{n^{2}}}^{\frac{1}{4}+\frac{1}{n^{2}}} 1^{2} d x=\frac{2}{n^{2}} \rightarrow 0 \quad n: \text { odd } \\
\int_{\frac{3}{4}-\frac{1}{n^{2}}}^{\frac{3}{4}+\frac{1}{n^{2}}} 1^{2} d x=\frac{2}{n^{2}} \rightarrow 0 \quad n: \text { even }
\end{array} \quad \text { as } n \rightarrow \infty\right.
$$

Hence $g_{n}(x) \rightarrow 0$ in the L^{2} sense.
On the other hand, for all odd n, we have $g_{n}\left(\frac{1}{4}\right)=1$ which implies that $g_{n}(x)$ cannot tend to zero in the pointwise sense.

